Lung Cancer Update

Samer Kanaan, M.D.

- Understand the Societal impact of Lung Cancer
- Identify Risk Factors for Lung Cancer
- List Diagnostic Tests Available for Lung Cancer
- Understand the history and current recommendations on Lung Cancer Screening
- Understand the Staging for Lung Cancer
- Understand the Treatment options available for Lung Cancer with emphasis on newer surgical techniques available such as VATS lobectomy

Disclaimer

I have NO personal financial relationship with any manufacturer of products or services that will be discussed in this lecture.

US Epidemiology

Leading Cancer Sites, Cases 2008

> 215,020 new cases in the US in 2008

- > 114,690 in men
- 100,330 in women
- Accounts for 15% of all new cancer cases
- Average age at diagnosis is 71
- Lifetime risk is 1 in 13 for men and 1 in 16 for women
- 161,840 deaths in the US in 2008
 - > 90,810 men
 - 71,030 women
 - Accounts for 29% of all cancer deaths

Lung cancer is the leading cause of cancer death for both men and women

*Excludes basal and squamous cell skin cancers and in situ carcinoma except urinary bladder.

@2008, American Cancer Society, Inc., Surveillance Research

More people die of Lung cancer than of <u>Colon, Breast</u>, and <u>Prostate</u> cancers <u>COMBINED!</u>

Lung Cancer Deaths in 2008 161,840

Colon Cancer Deaths =49,960Breast Cancer Deaths =40,480Prostate Cancer Deaths =28,660

Combined Cancer Deaths = 119,100

Age-Adjusted Cancer Death Rates,* Males by Site, US, 1930-2004

*Per 100,000, age-adjusted to the 2000 US standard population.

Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancer of the liver, lung and bronchus, and colon and rectum are affected by these coding changes.

Source: US Mortality Data 1960 to 2004, US Mortality Volumes 1930 to 1959, National Center for Health Statistics, Centers for Disease Control and Prevention, 2006.

American Cancer Society, Surveillance Research, 2008

*Per 100,000, age-adjusted to the 2000 US standard population. †Uterus cancer death rates are for uterine cervix and uterine corpus combined. **Note:** Due to changes in ICD coding, numerator information has changed over time. Rates for cancer of the lung and bronchus, colon and rectum, and ovary are affected by these coding changes.

Source: US Mortality Data 1960 to 2004, US Mortality Volumes 1930 to 1959, National Center for Health Statistics, Centers for Disease Control and Prevention, 2006. American Cancer Society, Surveillance Research, 2008

Worldwide Lung Cancer

- Estimated 1.5 million new cases of Lung cancer expected each year
- Accounts for 12% of total cancer diagnoses
- More than 1.3 million people expected to die from Lung cancer each year
- Leading cause of cancer death in Men
 Second leading cause of cancer death in Women

Lung Cancer Survival Rates

Table 1. Changes in 5-Year Survival, Mortality, and Incidence for 20 Solid Tumors

Primary Site	5-Year Survival, %		Absolute Increase	% Change (1950-1996)	
	1950-1954	1989-1995	in 5-Year Survival, %	Mortality	Incidence
Prostate	43	93	50	10	190
Melanoma	49	88	39	161	453
Testis	57	96	39	-73	106
Bladder	53	82	29	-35	51
Kidney	34	61	27	37	126
Breast	60	86	26	-8	55
Colon	41	62	21	-21	12
Rectum	40	60	20	-67	-27
Ovary	30	50	20	-2	3
Thyroid	80	95	15	-48	142
Larynx	52	66	14	-14	38
Uterus	72	86	14	-67	0
Cervix	59	71	12	-76	-79
Oral cavity	46	56	10	-37	-38
Esophagus	4	13	9	22	-8
Brain	01	20	9	45	68
Lung	6	14	8	259	249
Stomach	12	19	7	-80	-/8
Liver	1	6	5	34	140
Pancreas	1	4	3	16	9

Trends in 5-Year Relative Survival Rates* (%) by Race and Year of Diagnosis, US, 1975-2003

Site	1075 77	White	1006 2002		ican Amer		4075 77	All Races	
	1975-77	1984-86	1996-2003	1975-77	1984-86	1996-2003	1975-77	1984-86	1996-2003
All sites	51	55	67†	40	41	57†	50	54	66¹
Brain	23	28	34†	27	33	37†	24	29	35†
Breast (female)	76	80	90 [†]	62	65	78†	75	79	89 [†]
Colon	52	60	66 ¹	46	50	55 [†]	51	59	65†
Esophagus	6	11	181	3	8	11 ^t	5	10	16†
Hodgkin lymphoma	74	80	871	71	75	81†	74	79	861
Kidney	51	56	66†	50	54	66+	51	56	66†
Larynx	67	68	66	59	53	50	67	66	64
Leukemia	36	43	51†	34	34	40	35	42	50+
Liver#	4	6	10 [†]	2	5	71	4	6	111
Lung & bronchus	13	14	16 [†]	12	11	13 [†]	13	13	16 ¹
Melanoma of the skin	82	87	92 [†]	60 [‡]	70 [§]	77	82	87	92†
Myeloma	25	27	34†	31	32	32	26	29	34†
Non-Hodgkin lymphoma	a 48	54	65†	49	48	56	48	53	64†
Oral cavity	55	57	62 ^t	36	36	41	53	55	60 [†]
Ovary	37	39	45†	43	41	38	37	40	45 ¹
Pancreas	З	3	51	2	5	5†	2	3	51
Prostate	70	77	99 [†]	61	66	95†	69	76	99 [†]
Rectum	49	58	66 [†]	45	46	58 ⁺	49	57	66†
Stomach	15	18	221	16	20	241	16	18	241
Testis	83	93	96†	82 [‡]	87 ⁺	88	83	93	96 [†]
Thyroid	93	94	971	91	90	94	93	94	97 ¹
Urinary bladder	75	79	81†	51	61	65†	74	78	81 [†]
Uterine cervix	71	70	74†	65	58	66	70	68	73 [†]
Uterine corpus	89	85	86 [†]	61	58	61	88	84	84 [†]

*Survival is adjusted for normal life expectancy and based on cases diagnosed in the SEER 9 areas from 1975-1977, 1984-1986, and 1996-2003, and followed through 2004. †The difference in rates between 1975-1977 and 1996-2003 is statistically significant (p <0.05). ‡The standard error of the survival rate is between 5 and 10 percentage points. §The standard error of the survival rate is greater than 10 percentage points. #Includes intrahepatic bile duct.

Source: Ries LAG, Melbert D, Krapcho M, et al (eds.). SEER Cancer Statistics Review, 1975-2004, National Cancer Institute, Bethesda, MD, www.seer.cancer.gov/csr/1975_2004/, 2007.

American Cancer Society, Surveillance Research, 2008

Smoking

- Responsible for 87% of Lung Cancer Deaths Annually
- Latent period of 20-25 years
- Dose related
 - (9-10 fold risk average smoker, 20 fold risk for heavy smoker)
- Smoking reduces the lifespan of average American by <u>14 years</u>
- Secondhand smoke
 - Non-smoking spouses who live with a smoker have a 20-30% greater risk
- Radon Exposure
- Asbestos Exposure
 - Synergy with Tobacco (50-90 times the risk of cancer)
- Other Environmental exposures
 - Arsenic, Chromium, Nickel, Silica, Soot or Tar
 - Benzopyrene, Vinyl Chloride, Diesel exhaust
- Beta carotene supplements only in smokers

Genetic Factors

- p53 tumor suppressor gene mutation
- k-ras oncogene activation
- Personal or Family History Lung Cancer

Air pollution

Worldwide, 5% of deaths from Lung cancer may be due to air pollution

Recurring inflammation

- Scarring from Tuberculosis or recurrent pneumonias can increase risk
- Prior Radiation Treatment
 - Mantle cell lymphoma
 - Breast cancer Non smoking women with radiation to breast after lumpectomy do NOT have increased risk of lung cancer

Race / Ethnicity

African Americans have similar rate of smoking as Whites (20% vs 22% in 2004); yet

Black men are 50% more likely to develop lung cancer

- > 30% more likely to die from lung cancer than White men
- Hispanics smoke less (15% in 2004) than Whites or African Americans
 - > 50% lower lung cancer rate than Whites
 - **> 60% lower lung cancer rate than African Americans**

> High school students smoking trend is alarming: data from 2004 \rightarrow

- Hispanics 26.2%
- African Americans 17.1%
- Whites 31.5%

Prevalence of Students in Grades 9–12 Reporting Current Cigarette Use by Sex and Race/Ethnicity YRBS: 2007

<u>2007</u>

20% high school students were smokers

6% middle school students were smokers

Source: MMWR Surveill Summ. 2008;57:1-131. NH indicates non-Hispanic.

Race and Gender Trends (SEER database)

SubGroup	Incidence/100,000	Death/100,000
White Men	79.4	78.1
White Women	51.9	41.5
African American Men	120.4	107
African American Women	54.8	40
Asian American Men	62.1	40.9
Asian American Women	28.4	19.1
Hispanic Men	46.1	40.7
Hispanic Women	24.4	15.1
American Indian Men	45.6	52.9
American Indian Women	23.4	26.2

C-STATS Report

Age-adjusted lung cancer mortality rates

MORTALITY(age-adjusted)

	Number of cases	<u>Rate</u>
• NAPA	78	50.4
• SOLANO	198	54.0
• SONOMA	229	45.6
• STATEW	DE 13,168	40.4

Sign and Symptoms

\succ	Cough (that does not resolve)	29-87%
\succ	Hemoptysis	9-57%
\succ	Pleuritic chest pain	6-60%
\succ	Shortness of Breath / Dyspnea	3-58%
\succ	Wheezing (new onset) / Stridor	2-14%
\succ	Hoarseness	1-18%
\succ	Pleural Effusion	7%
\geqslant	Dysphagia	2-6%
\succ	Superior vena cava syndrome	4-11%
\geqslant	Pancoast's Syndrome / Horner's Syndrome	3-5%
\geqslant	Phrenic Nerve paralysis	1%
\geqslant	Neurologic Metastasis	10%
\geqslant	Bone Metastasis	22%
\geqslant	Liver Metastasis	5%
\geqslant	Adrenal Metastasis	2-4%
\geqslant	Paraneoplastic Syndromes	10-20%
	SIADH 1-27% Hypercalcemia 1-12% Cushing's 2-6%	
\succ	ASYMPTOMATIC	
	All patients with Lung cancer	5-20%
	Patients detected in screening programs	60%

Diagnosis - Imaging

Chest X ray > Tumor Sensitivity = 26% Specificity = 93% CT scan > Tumor Sensitivity = 63% Specificity = 84% > Mediastinum Sensitivity = 51-75% Specificity = 66-86%

PET Scan

Tumor

- Sensitivity = 83-96%
- Specificity = 73-78%

Mediastinum

- Sensitivity = 64-91%
- Specificity = 77-93%

Distant Metastasis

- Sensitivity = 95%
- Specificity = 83%

PET and CT scan combined

- Mediastinum
 - Sensitivity = 93%
 - Specificity = 95%

Diagnosis - Imaging

MRI scan

Tumor

Sensitivity = 56%

Specificity = 80%

Mediastinum

Sensitivity = 48%

Specificity = 64%

Brain

> 7% detection rate for occult metastasis

> 4% Stage I and Stage II

> 11% for Stage III

Bone scan

(with clinical indicators such as pain or increased alkaline phoshatase)

Sensitivity = 73-100%

Specificity = 54%

Sputum Cytology

(at least 3 specimens)

 Sensitivity = 50-71% (Lower in peripheral versus central tumors)
 Specificity = 99%

DNA Methylation Analysis increases Sensitivity

Methylation disturbs normal gene expression

p16 & MGMT (O⁶-methylguanine DNA methyltransferase)

- Methylated in 100% of squamous cell cancer sputum samples
- Methylated in 25% of long-term smokers
- Marker of risk

> Up to 25% of sputum samples are inadequate for analysis

Fine Needle Aspiration

- Sensitivity = 50-98%
- Specificity = 97%
- Pneumothorax risk 15-37% with 10-15% requiring CT placement

Bronchoscopy with Endoscopic / Endobronchial Ultrasound

- Sensitivity = 58-97%
 (Lower with peripheral tumors)
 Specificity = 90-97%
- Complication rate = 1%

Thoracentesis

Sensitivity = 80%

Specificity = 90%

Mediastinoscopy

- Sensitivity = 70-95%
- Specificity = 100%
- Complication rate = 0.6%
- Mortality rate = 0.2%

Thoracoscopy

Chest Xray and/or Sputum Cytology

Benefits

➢ Based on Fair evidence → Screening does NOT reduce mortality from lung cancer

Harms

Based on Solid evidence Screening would lead to false-positives and unnecessary invasive procedures and treatments

➢ <u>Studies</u>:

- Philadelphia Pulmonary Neoplasm Research Project
- Veterans Administration study
- South London Lung Cancer Study
- North London Lung Cancer Study
- Kaiser Foundation Health Plan multiphasic screening trial
- Czechoslovak Study
- German Democratic Republic Study
- Japan Study
- Mayo Lung Project
- Johns Hopkins Study
- Memorial Sloan-Kettering Study

CXR /Sputum cytology NOT helpful

	MSKCC	Hopkins	Мауо	Czech
Accrual	1974-1982	1973-1982	1971-1983	1976-1980
Screened	N=4968	5226	4618	3172
Protocol	Annual CXR, sputum Q4m	Annual CXR, sputum Q4m	CXR & sputum Q4m	CXR & sputum Q6m
Cancers at baseline	30	39	NA	NA
Cancers at screen	114	194	206	39
Lung cancer				
mortality (per 1000 person-years)	2.7	3.4	3.2	3.6
Control	N= 5072	5161	4593	3174
Protocol	Annual CXR	Annual CXR	Annual CXR & sputum	CXR & sputum Q3y
Cancers at baseline	23	40	NA	NA
Cancers at screen	121	202	160	27
Lung cancer				
mortality (per 1000 person-years)	2.7	3.8	3.0	2.6

Mayo Lung Project: Incidence Screening

	Experimental group	Control group
Population	4,618	4,593
Incidence	206	160 (p=0.016)
Resectability	46 percent	32 percent
Five year survival (actuarial)	33 percent	15 percent
Fatality (actual)	59 percent	72 percent (p=0.016)
Mortality	122	115

Data from Fontana, R, Sanderson, DR, Woolner, LB, et al, J Occupat Med 1986; 28:746 and Fontana, R, Sanderson, DR, Woolner, LB, et al, Cancer 1991; 67:1155.

Czechoslovak Study: Incidence Screening

	Experimental group	Control group
Population	3,172	3,174
Incidence	36	19
Resectability	25 percent	15 percent
Five year survival (actuarial)	23 percent	0 percent (p=0.0001)
Mortality	28	18

Data from Kubik, A, Polak, J, Cancer 1986; 57:2428 and Kubik, A, Parkin, DM, Khlat, M, et al, Int J Cancer 1990; 45:26.

Low-Dose Helical CT Scan (LDCT)

Benefits

Evidence is inadequate to determine whether screening reduces mortality from lung cancer

Harms

Based on Solid evidence Screening would lead to false-positives and unnecessary invasive procedures and treatments

➢ <u>Studies</u>:

- Early Lung Cancer Action Project (ELCAP)
- Mayo Clinic Study
- University of Munster study
- Shinshu University study
- Anti-Lung Cancer Association (ALCA)

Low-dose CT Screening Trials

	Mayo Clinic Study	Shinshu University	Early Lung Cancer Action Project (ELCAP)	Anti-Lung Cancer Association (ALCA)	University of Munster
Prevalence					
Ν	1520	5483	1000	1611	817
Abnormal CT	51%	35%	23%	11.5%	43%
# cancers on CXR	NA	1	7	5	NA
# cancers on CT	26	19	27	14	11
Stage I NSCLC	79%	84%	85%	71%	64%
Incidence					
Ν	1438	4781	1184	1180	
# cancers on CT	10	37	7	19	
Stage 1 NSCLC	67%	86%	82%	79%	
Interval cancers not detected on screening CT	2	NA	2	3	

Guidelines for Lung Cancer Screening

Organization	Recommendation	Year
US Preventive Services Task Force	Evidence is insufficient to recommend for or against screening asymptomatic persons for lung cancer with either low dose computerized tomography, chest x-ray, sputum cytology, or a combination of these tests.	2004
American College of Chest Physicians	Recommends that individuals should only be screened with low-dose CT in the context of well-designed clinical trials	2003
American Cancer Society	Recommends against routine screening of asymptomatic persons	2002
American Academy of Family Physicians	Recommends against the use of chest x-ray and/or sputum cytology in asymptomatic persons	1997
Canadian Task Force on the Periodic Health Examination	Recommends against the use of chest x-ray or sputum cytology in asymptomatic persons	1994
American College of Radiology	Recommends against the use of chest x-ray in asymptomatic persons	1993
American College of Physicians	Recommends against the use of chest x-ray in asymptomatic persons	1991
American Thoracic Society	Recommends against mass lung cancer screening programs except as part of well-designed, controlled clinical trials	1983

National Lung Screening Trial

The National Lung Screening Trial (NLST) is a lung cancer screening trial sponsored by the National Cancer Institute (NCI).

Launched in 2002, NLST is comparing: spiral computed tomography (CT) and standard chest X-ray. This study will aim to show if either test is better at reducing deaths from this disease.

By February 2004, nearly 50,000 current or former smokers had joined NLST at more than 30 study sites across the country. The trial, now closed to further enrollment, is slated to collect and analyze data for eight years, and will examine the risks and benefits of spiral CT scans compared to chest X-rays.

This trial is a randomized, controlled study and is large enough to determine if there is a 20 percent or greater drop in lung cancer mortality from using spiral CT compared to chest X-ray.

CT-screening vs. Mammography

	Breast cancer detection in women ≥ 40	Lung cancer detection in people ≥ 40
Baseline screening	0.6 - 1.0%	1.3%
Annual screening	0.2 - 0.4%	0.3%

Henschke et al. NEJM 2006; 355

Who are the at-risk patients?

History of smoking > Work related exposure history Significant second-hand smoke exposure Chronic cough > Hemoptysis Pleuritic chest pain

What do you do for these patients?

For symptomatic at-risk patients:
 CT scan of the Chest
 Further Workup as Indicated

For asymptomatic patients who are at-risk:
 No indication to date for CT scan
 Await NLST results

WHO Classification (1999) for NSCLC (80% of Lung CA)

Squamous Cell Carcinoma (30%)

- Most commonly in Men
- Fends to spread Locally and usually central lesions
- Related to Smoking
- > More readily detected in Sputum

> Adenocarcinoma (30-50%)

- Most commonly in Women and Non-smokers, but Smoking is risk factor
- > Usually peripheral lesions
- > Metastasize early
- Bronchoalveolar Carcinoma (BAC) is a subtype

Large Cell Carcinoma (10-25%)

- > Undifferentiated, primitive cells
- Metastasize early
- Usually peripheral lesions
- Adenosquamous Carcinoma
- Carcinomas with Pleomorphic or Sarcomatous elements (0.5%)
- Carcinoid tumor (3-5%)
- Carcinomas of Salivary-gland type
- Unclassified Carcinoma

TNM Definitions

T Stage Size of the Primary Tumor Adjacent structures invaded into by Tumor N Stage Nodal disease involvement > M Stage Metastatic disease involvement

A

IB

IIA

IIB

IV

TNM Classifcation

T1N0M0 T2N0M0 T1N1M0 T2N1M0 or **T3N0M0** IIIA T1-3N2M0 or T3N1M0 T4N_{any}M0 or T_{any}N3M0 IIIB T_{any}N_{any}M1

T an	d M	NO	N1	N2	N3
6 th Ed TNM	7 th Ed TNM	Stage	Stage	Stage	Stage
T1 (<2cm)	T1a	IA	IIA	IIIA	IIIB
T1 (2-3cm)	T1b	IA	IIA	IIIA	IIIB
T2 (<5cm)	T2a	IB	IIA (IB)	IIIA	IIIB
T2 (5-7cm)	T2b	IIA (IB)	IIB	IIIA	IIIB
T2 (>7cm)	ТЗ	IIB (IB)	IIIA (IB)	IIIA	IIIB
T3 invasion	ТЗ	IIB	IIIA	IIIA	IIIB
T4 (same lobe nodules)	ТЗ	IIB (IIIB)	IIIA (IIIB)	IIIA (IIIB)	IIIB
T4 (extension)	Т4	IIIA (IIIB)	IIIA (IIIB)	IIIB	IIIB
M1 (ipsilat lung)	Τ4	IIIA (IV)	IIIA (IV)	IIIB (IV)	IIIB (IV)
T4 (pleural effusion)	M1a	IV (IIIB)	IV (IIIB)	IV (IIIB)	IV (IIIB)
M1 (contralat lung)	M1a	IV	IV	IV	IV
M1 (distant)	M1b	IV	IV	IV	IV

International Association for the Study of Lung Cancer, 2009

I Highest Mediastinal 2 Upper Paratracheal 3 Prevascular and Retrotracheal 4 Lower Paratracheal (including azygos nodes) N₂ = single digit, ipsilateral N₃ = single digit, contratateral or supraclavicular Aortic Nodes 5 Subaortic (AP window) 6 Para-aortic (Ascending aorta or phrenic) Inferior Mediastinal Nodes 7 Inferior Mediastinal Nodes 8 Paraesophageal (below carina) 9 Pulmonary Ligament N₁ Nodes

- II Interlobar
- I2 Lobar
- I3 Segmental
- I4 Subsegmental

Superior Mediastinal Nodes

- I 0 Hilar

Stage IA, cancer is in the lung only, less than 3cm in size. Stage IB, the cancer is: (a) greater than 3cm in size (b) involve the main bronchus (c) invade visceral pleura (d) associated with obstructive pneumonitis.

Stage IIA, cancer is less than 3cm in size and involves ipsilateral hilar lymph nodes. Stage IIB, cancer is either the same as in stage IB and has also spread to ipsilateral hilar lymph nodes or Cancer has not spread to lymph nodes but has spread to one or more of the following: (a) the chest wall, (b) the diaphragm, (c) mediastinal pleura, (d) pericardium, (e) the main bronchus less than 2cm from the carina, and/or (f) associated obstructive pneumonitis of the entire lung.

^{© 2007} Terese Winslow U.S. Govt. has certain rights

Stage IIIA The cancer has spread to ipsilateral mediastinal or subcarinal lymph nodes (N2).

Similar to Stage IIB, It may also spread to one or more of the following: (a) the chest wall, (b) the diaphragm, (c) mediastinal pleura, (d) pericardium, (e) the main bronchus less than 2cm from the carina, and/or (f) associated obstructive pneumonitis of the entire lung. Stage IIIB The cancer has spread to (a) contralateral mediastinal or hilar nodes or ipsilateral supraclavicular nodes.

The cancer may also spread to one or more of the following: (b) the heart, (c) the inferior vena cava and the aorta, (f) the trachea, and (g) the esophagus.

Cancer may also spread to the pleural fluid (T4).

Separate nodules in the same lobe is also (T4)*

© 2007 Terese Winslow U.S. Govt. has certain rights

Staging

NSCLC Incidence by Stage US Population, 2006

IA	T1N0M0	67
IB	T2N0M0	57
IIA	T1N1M0	55
IIB	T2N1M0 or T3N0M0	39
IIIA	T1-3N2M0 or T3N1M0	23
IIIB	T4N _{any} M0 or T _{any} N3M0	5
IV	T _{any} N _{any} M1	1

Figure 3. Survival rates after surgical resection by stage of disease (P < .001).

Adapted from Mountain (10).

Non-small cell lung cancer survival by stage*

Stage	5-year relative survival rate	
	56%	
11	34%	
\mathbf{m}^{*}	10%	
IV	2%	

NCI Surveillance, Epidemiology, and End Results (SEER) Database 1988-2001

Treatment

Treatment of Lung Cancer According to Stage

<u>Stage</u>	Primary treatment	Adjuvant therapy	Five-year survival rate (%)			
Non-small cell carcinoma						
l I	Resection	Chemotherapy	60 to 70			
Ш	Resection	Chemotherapy with or without radiotherapy	40 to 50			
IIIA (resectable)	Resection with or without preoperative chemotherapy	Chemotherapy with or without radiotherapy	15 to 30			
IIIA (unresectable) or IIIB nvolvement of contralateral or supraclavicular lymph nodes)	Chemotherapy with concurrent or subsequent radiotherapy	None	10 to 20			
IIIB (pleural effusion) or IV	Chemotherapy or resection of primary brain metastasis and primary T1 tumor	None	10 to 15 (two-year survival)			
Limited disease	Small cell Chemotherapy with concurrent radiotherapy	carcinoma None	15 to 25			
Extensive disease	Chemotherapy	None	< 5			

(in รเ

Adapted with permission from Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med 2004;350:388.

Treatment – Stage I

- Surgery is the treatment of choice.
- Lobectomy is recommended if patient's medical condition and pulmonary function tests are acceptable.
- Postoperative Mortality 3-5% with Lobectomy
- Segmental or wedge resection recommended for patients with impaired pulmonary function
- Lung Cancer Study Group study (Ginsberg and Rubinstein)
- Lobectomy versus limited resection Stage I lung cancer
- Reduction in local recurrence with lobectomy (6.4% vs 17.2%)
- No significant difference in overall survival (68% vs 50%)
- Warren et al showed: Survival Advantage with Lobectomy for patients with tumors more than 3cm

Treatment – Stage I

- Inoperable Stage I: Radiation
- Dosoretz et al & Gauden et al:
 - 5 year survival 10-27%
 - For Stage IA (T1N0) 5 year survival was 32-60%
- Radiation dose is 60 Gy

Adjuvant Radiation:

Meta analysis of 9 randomized trials for postoperative radiation in Stage I showed a 7% reduction in overall survival

Adjuvant Chemotherapy:

- The Lung Adjuvant Cisplatin Evaluation (LACE), which was based on a pooled analysis of five randomized trials, has demonstrated that cisplatinbased adjuvant chemotherapy improved survival in patients with completely resected NSCLC
- This analysis has suggested that platinum-based adjuvant chemotherapy may have <u>NO</u> benefit for patients with stage IA and only a <u>marginal</u> benefit for patients with stage IB.
 - Tumor > 5cm in size
 - Poorly differentiated

Treatment – Stage II

- Surgery is the treatment of choice.
- Lobectomy is recommended if patient's medical condition and pulmonary function tests are acceptable.
- Postoperative Mortality 3-5% with Lobectomy
- Postoperative Mortality 5-8% with Pneumonectomy
- Segmental or wedge resection recommended for patients with impaired pulmonary function

Inoperable Stage II: Radiation

- Dosoretz et al:
 - 5 year survival 10%
 - For T1N1 5 year survival was 60%
- Radiation dose is 60 Gy

Treatment – Stage II

Adjuvant Radiation:

Postoperative radiotherapy reduces rates of local recurrence by 11% to 18% among patients with completely resected, pathologically confirmed stage II NSCLC. Therefore, if the outcome of interest is a reduction in the frequency of local tumour recurrence, radiotherapy is recommended. However, there is no evidence of a survival benefit from postoperative radiotherapy alone.

Adjuvant Chemotherapy:

- The Lung Adjuvant Cisplatin Evaluation (LACE), which was based on a pooled analysis of five randomized trials, has demonstrated that cisplatinbased adjuvant chemotherapy improved survival in patients with completely resected NSCLC
- This benefit depended on stage, being greatest in patients with stage II or IIIA disease.
- With a median followup of 5.1 years, the overall hazard ratio of death was 0.89 (95% C.I.; 0.82–0.96; p<0.005) which corresponds to a 5-year absolute benefit of 4.2% with chemotherapy. Hazard Ratio for stage II was 0.83 (95% C.I.; 0.73–0.95).

Treatment – Stage IIIA

- Stage IIIA N2 disease 5 year survival is 10-15% overall
- Stage IIIA bulky mediastinal involvement (visible on CXR) have 5 year survival of 2-5%
- All patients are candidates for treatment on clinical trials since long term survival is poor

Radiation:

Treatment with 60 Gy can achieve long term survival benefit in 5-10% of patients

Chemotherapy and Radiation:

Meta analysis from 11 randomized studies showed cisplatin based chemotherapy with radiation resulted in 10% reduction in the risk of death compared to radiation therapy alone.

Combined SurgicalTherapy:

- Neoadjuvant chemotherapy plus surgery had median survival > 3X versus surgery alone
- ➢ Neoadjuvant chemotherapy and radiation allowed 65-75% patients to undergo surgical resection → these patients had 27% 3 year survival.

Treatment – Stage IIIA

Adjuvant Chemotherapy alone:

- The Lung Adjuvant Cisplatin Evaluation (LACE) has demonstrated that cisplatin-based adjuvant chemotherapy improved survival in patients with completely resected NSCLC
- With a median followup of 5.1 years, the overall hazard ratio of death was 0.89 (95% C.I.; 0.82–0.96; p<0.005) which corresponds to a 5-year absolute benefit of 4.2% with chemotherapy. Hazard Ratio for stage III was 0.83 (95% C.I.; 0.73–0.95)

Adjuvant Radiation Therapy alone:

- ➢ Meta analysis of nine randomized trials of postoperative radiation versus surgery alone → NO difference in overall survival for all patients or the subset of N2 positive patients.
- Postoperative radiotherapy reduces rates of <u>local recurrence</u> by 11% to 18% among patients with completely resected, pathologically confirmed IIIA NSCLC

Treatment – Stage IIIB / IV

Chemotherapy

Radiation alone

Chemotherapy plus radiation

Meta analysis of 54 randomized trials showed an absolute survival benefit of 4% at 2 years with combination of chemotherapy and radiation

Treatment of Lung Cancer According to Stage

<u>Stage</u>	Primary treatment	Adjuvant therapy	Five-year survival rate (%)			
Non-small cell carcinoma						
l I	Resection	Chemotherapy	60 to 70			
Ш	Resection	Chemotherapy with or without radiotherapy	40 to 50			
IIIA (resectable)	Resection with or without preoperative chemotherapy	Chemotherapy with or without radiotherapy	15 to 30			
IIIA (unresectable) or IIIB nvolvement of contralateral or supraclavicular lymph nodes)	Chemotherapy with concurrent or subsequent radiotherapy	None	10 to 20			
IIIB (pleural effusion) or IV	Chemotherapy or resection of primary brain metastasis and primary T1 tumor	None	10 to 15 (two-year survival)			
Limited disease	Small cell Chemotherapy with concurrent radiotherapy	carcinoma None	15 to 25			
Extensive disease	Chemotherapy	None	< 5			

(in รเ

Adapted with permission from Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med 2004;350:388.

Newer Treatments

Cyber knife

Radiofrequency Ablation (RFA)

Photodynamic Therapy (PDT)

Targeted Therapies

Newer Treatments

CyberKnife

- CyberKnife is a frameless robotic radiosurgery method of delivering radiotherapy, with the intention of targeting treatment more accurately than standard radiotherapy.
- Two main elements are the small linear particle accelerator which produces radiation and a robotic arm that allows energy to be directed to the body from any direction.
- Used for Inoperable early stage lung cancer, or
- Metastatic disease

CyberKnife Results

Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients, *Int J Radiat Oncol Biol Phys* 2004

> Twenty patients with Stage I-II NSCLC and 41 patients with 51 pulmonary metastases

<u>Overall survival rate</u>: Lung Cancer Patients 1 year = 52% 2 year = 32%

Metastasis Patients 1 year = 85% 2 year = 33%

Newer Treatments

Radiofrequency Ablation (RFA)

- Ultrasound, computed tomography (CT) or magnetic resonance imaging (MRI) are used to help guide a needle electrode into a cancerous tumor.
- High-frequency electrical current is then used to heat a specific volume of tissue to temperatures high enough to cause destruction of undesired malignant cells.
- Used for Inoperable early stage lung cancer, or
- Metastatic disease

RFA Results

Pulmonary Radiofrequency Ablation: Longterm Safety and Efficacy in 153 Patients, *Radiology* 1997

> Overall long-term survival rates for stage I non–small cell lung cancer (NSCLC):

1 year = 78% 2 year = 57% 3 year = 36% 4 year = 27% 5 year = 27%

Pneumothorax rate 28.4% Other Complication rate 14.3% 30 day Mortality rate 3.9% → 2.6% procedure specific

Newer Treatments

Photodynamic Therapy (PDT)

Table 1

- Involves the use of photosensitizing agents that are selectively retained within tumor cells.
- The agents remain inactive until exposed to light of the proper wavelength.
- When activated by light, these compounds generate toxic oxygen radicals that result in tumor necrosis.
- In lung cancer, PDT can be used for both carcinoma in situ and for the treatment of unresectable disease with endobronchial obstruction.

Study	Number of Tumors	Clinical Stage	Drug	Complete Response Rate	Partial Response Rate	Rate of Nonresponses	Recurrence Rate
Edell and Cortese[46]	14	IA	HPD	93%	7%	0%	21%
Kato et al[47]	95	CIS and IA	Porfimer sodium	83%	. 17%	0%	6%
Furuse et al(48)	59	CIS and IA	Porfimer sodium II	85%	10%	5%	10%
Sutedja et al[49]	39	CIS (N = 17)	Porfimer sodium	100%	0%	0%	29%
		IA (N = 22)	soulum	50%	45%	5%	
Cortese et al[50]	23	Early stage	HPD	70%	30%	0%	48%

Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma, *Laser Surg Med* 2007

Two Year Overall Survival = 73% Five year Overall Survival = 59%

Ost, Oncology, 2000

Selected targeted agents in clinical development for lung cancer treatment

Target	Drug	Trade name
EGFR pathway inhibitors		
EGFR	Gefitinib	Iressa
EGFR	Erlotinib	Tarceva
EGFR	Cetuximab	Erbitux
EGFR	Matuzumab	
EGFR	Panitumumab	Vectibix
EGFR, HER2	Lapatinib	Tykerb
EGFR, HER2	HKI-272	2
EGFR, HER2, ERB4	CI-1033	
VEGF/VEGFR pathway inhibitors		\frown
VEGF-A	Bevacizumab	Avastin
VEGFR-2, EGFR	ZD6474; Vandetanib	Zacuma
VEGFR-1-3	AZD2171	Recentin
VEGFR-1-3, PDGFR, c-KIT, FLT-3	SU11248; Sunitinib	Sutent
VEGFR-1-3, PDGFR-β, c-KIT, c-fms	PTK787; Vatalanib	
VEGFR-1-3, PDGFR, c-KIT	AG-013736; Axitinib	Champix
VEGFR-1-3, PDGFR, c-KIT	AMG 706	and the second second 20
Ras/Raf/MEK pathway inhibitors		
Ras	Tipifarnib (FTI)	Zarnestra
Ras	Lonafarnib (FTI)	Sarasar
Raf-1, VEGFR-2 and -3, PDGFR, c-KIT	BAY 43-9006; Sorafenib	Nexavar
MEK	CI-1040	
MEK	PD-0325901	
MEK	AZD6244	
PI3K/Akt/PTEN pathway inhibitors		
PI3K	LY294002	
mTOR	Rapamycin; Sirolimus	Rapamune
mTOR	CCI-779; Temsirolimus	
mTOR	RAD001; Everolimus	
mTOR	AP23573	
Tumor suppressor gene therapies		
p53	p53 retrovirus	
p53	p53 adenovirus (Ad5CMV-p53)	Advexin
FUS1	FUS1 nanoparticle	
Proteasome inhibitors		
Proteasomes	Bortezomib	Velcade
HDAC inhibitors		
HDAC	SAHA; Vorinostat	Zolinza
HDAC	Depsipeptide	
Telomerase inhibitors		
Telomerase	GRN163L	

Stage of development in lun	g cancer		
Approved for advanced NS	SCLC ^A		
Approved for advanced NSCLC			
Phase II/III			
Phase			
Phase II			
1 11050 11			
Approved for advanced NS	SCLC		
Phase II/III			
Phase II/III			
Phase II			
Phase II			
Phase II			
Phase I			
Phase III			
Phase III			
Phase II			
Phase II			
Phase I/II			
Phase I			
Phase I	Ν		
Phase I	14		
Phase I/II	0		
Phase I/II			
Phase I			
	Sopi		
Phase I			
Phase 1	³ Hamon		
Phase I	"HOBION		
Phase II			
Phase II			
Phase I			
Phase I			

Iressa Tarceva Erbitux Avastin

New molecularly targeted therapies for lung cancer

Sophie Sun,^{1,2} Joan H. Schiller,^{1,2} Monica Spinola,^{2,3} and John D. Minna^{1,2,3}

¹Division of Hematology and Oncology, ²Simmons Comprehensive Cancer Center, and ³Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Wedge Resection

© 2006 Terese Winslow U.S. Govt. has certain rights

Pneumonectomy

VATS Lobectomy

Video Assisted Thorascopic Surgery

VATS Lobectomy

Standardize the definition of a VATS lobectomy to encompass a true anatomic lobectomy with individual ligation of lobar vessels and bronchus as well as hilar lymph node dissection or sampling using the video screen for guidance, two or three ports, and no retractor use or rib spreading.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Video-Assisted Thoracic Surgery Lobectomy: Report of CALGB 39802—A Prospective, Multi-Institution Feasibility Study

Scott J. Swanson, James E. Herndon II, Thomas A. D'Amico, Todd L. Demmy, Robert J. McKenna Jr, Mark R. Green, and David J. Sugarbaker

Operative Characteristic	Value
Stage I NSCLC	
No. of patients	111
%	87
Successful VATS lobectomy	
No. of patients/total	96/111
%	86.5
95% CI, %	80% to 93%
Lobe resected, No. of patients	
RUL	23
RML	2
RLL	17
LUL	35
LLL	12
Unknown/other	7
Operative time, minutes	
Median	130
Range	47-428
Chest tube duration, days	
Median	3
Range	1-14

Abbreviations: NSCLC, non-small-cell lung cancer; VATS, video-assisted thoracic surgery; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.

Swanson et al

	Grade of Complications									
	Grade 3: S	evere	Grade 4: Threater		Grade 5: L	Total No. of				
Complication	No. of Patients	%	No. of Patients	%	No. of Patients	%	Patients Evaluated			
Cardiovascular: arrhythmia	•					a La Manie	The second second			
Arrhythmia, other	3	3	1	1	0	0	95			
Supraventricular arrhythmias	1	1	0	0	0	0	95			
Cardiovascular: general										
Hypotension	1	1	0	0	0	0	95			
Cardiac ischemia/infarction	0	0	0	0	0	0	95			
Thrombosis/embolism	0	0	0	0	0	0	95			
Operative injury of vein/artery	0	0	0	0	0	0	95			
Dermatology/skin										
Wound infection	0	0	0	0	0	0	95			
Hemorrhage				154		0	00			
Hemorrhage/bleeding associated	0	0	1	1	0	Ο	95			
Infection/febrile neutropenia					and the second second	5				
Infection without neutropenia	0	0	0	0	0	0	95			
Catheter-related infection	0	0	0	0	0	0	95			
Infection/other	0	0	0	0	0	0	95			
Pulmonary										
Pleural effusion	1	1	0	0	0	0	95			
Adult respiratory distress syndrome	0	0	0	0	0	0	95			
Pneumothorax	0	0	_0	0	0	0	95			
Pulmonary, other	0	0	1	1	0	0	95			
Summary					U.S.	U	00			
Maximum toxicity	4	4	3	3	0	0	95			

Results

- Mortality Rate = 2.7%
- Complication Rate = 7.4%
- > Arrhythmias = 5.6%
- Prolonged Air Leak = <1%</p>

Conversion Rate = 11% More than 1/3 of patients were older than 70 years of age

ACOSOG Z0030 Trial :

- Open thoracotomy in patients older than 70 years, morbidity of 40-50%
- Atrial Arrhythmias = 15%
- Prolonged Air Leak = 8%

<u>Thomas et al</u>:

Open thoracotomy in patients older than 70 years, mortality rate 12.8%

Video-Assisted Thoracic Surgery Lobectomy: Experience With 1,100 Cases

Robert J. McKenna, Jr, MD, Ward Houck, MD, and Clark Beeman Fuller, MD Cedars Sinai Medical Center, Los Angeles, California

Table 1. Anatomic Pulmonary Resection Assisted Thoracic Surgery	ons Done With Video-	0.75	ALL SIL	-	~	 					X .(1)	 [1A (n= 1B (n=		
Type of Resection	Number	0.75	-	^{تر} ا	1			٦				ר		2A (n= 2B (n=	59)	
Right upper lobectomy	403	0.50		ł	~	ļ		•••••						3A (n= 3B (n=		
Right middle lobectomy					۲		- 103	_				L				1
Right lower lobectomy		25 N											01000.000			
Pneumonectomy	14	0.25														1
Segmentectomy	19	0.00		N (2-1 1)												1
Sleeve lobectomy	3	5 0.00 -	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Bilobectomy	18					Su	urviv	al Ti	me ('	Year	s)					
Bilateral lobectomy	1	At Risk														
Left upper lobectomy	279	1A 1B	403 193.5	283 154	199.5 124	136	84.5 79.5	47	26.5	11	3	2	1	.5		
Left lower lobectomy	113	2A 2B 3A 3B	37 44 83.5 12	26.5 32.5 60 8.5	21.5 25 46 8	96.5 17 18.5 36 7.5	13.5 14 27.5	53 9.5 9 17.5 6	32.5 6.5 7 11.5 5	20 4 6 8.5 4	13.5 35 5 6	6.5 2 3 3 3	2 1 1 1.5	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5		

Results

- Mortality Rate = 0.8%
- Complication Rate = 15.3%
- > Arrhythmias = 2.9%
- Prolonged Air Leak = 5.1%
- Conversion Rate = 2.5%
- Mean Age of Patients = 71.2 years
- Mean LOS = 4.78 days
- > 20% discharged POD 1 or 2

ACOSOG Z0030 Trial :

- Open thoracotomy in patients older than 70 years, morbidity of 40-50%
- Atrial Arrhythmias = 15%
- Prolonged Air Leak = 8%
- Mortality Rate = 2.3%
 (Older than 70 years)

<u>Thomas et al</u>:

Open thoracotomy in patients older than 70 years, mortality rate 12.8%

Video-Assisted Thoracoscopic Lobectomy: State of the Art and Future Directions

Jason P. Shaw, MD, Francine R. Dembitzer, MD, Juan P. Wisnivesky, MD, MPH, Virginia R. Litle, MD, Todd S. Weiser, MD, Jaime Yun, MD, Cynthia Chin, MD, and Scott J. Swanson, MD

Division of Thoracic Surgery and Departments of Medicine and Pathology, The Mount Sinai Medical Center, New York, New York

Table 2.	Summary o	f Studies of	f Video-Assisted	Thoracoscopic	Procedures and	Overall Results
----------	-----------	--------------	------------------	---------------	----------------	------------------------

					Conversion	LOS, Mean/	Peri-Op	Peri-Op	
First Author	No.	Year	Patient Group	Procedure Performed	Rate, %	Median Days	Morbidity, %	Mortality, %	Survival, %
McKenna [4]	1100	2006	Benign + stage I–III NSCLC	Lobectomy	2.5	4.8	15	0.8	5 y: 1A, 84.5; 1B, 70.5; 2A, 13.5; 2B, 14; 3A, 27.5
Onaitis [5]	500	2006	Benign + NSCLC	Lobectomy	1.6	3	NR	1.0	2 y: 80
Yim [6]	214	1998	Benign + NSCLC	Lobectomy + others	0.9	6.8/NR	22	0.5	23 mon: 93
Kaseda [7]	204	2000	Benign + NSCLC	Lobectomy + others	1.5	NR/NR	2.3	0.8	5 y: stage I, 97
Roviaro [8]	171	2004	Clinical stage IA NSCLC	Lobectomy + others	5.3	NR/NR	8.7	0.6	3 y, 77; 5 y, 63.6
Walker [9]	159	2003	Stage I, II NSCLC	Lobectomy, lingulectomy	11.2	NR/6	NR	1.8	Stage I, 77.9; stage II, 51
Iwasaki [10]	140	2004	Stage IA NSCLC	Lobectomy + segmentectomy	2.1	NR	NR	0	5 y, 7
Swanson [11]	128	2002	Benign + NSCLC	Lobectomy	13	3	8.2	2.1	NR
Daniels [12]	110	2002	Benign + NSCLC	Lobectomy	1.8	NR/3	19	3.6	NR
Ohtsuka [13]	106	2004	Stage I NSCLC	Lobectomy + others	10	7.6	NR	0.9	3 y, 79
Solaini [14]	105	2001	Benign + NSCLC	Lobectomy + others	5.7	6.2/NR	12	NR	3 y, 85
Sugi [15]	100	2000	Stage 1A NSCLC	Lobectomy	4.2	NR	NR	NR	5 y, 90
Shiraishi [16]	95	2006	T1 N0 M0 NSCLC	Lobectomy	14/95	NR	NR	0	5 y, 89
Kirby [3]	61	1995	Stage I NSCLC (6 excluded)	Lobectomy	10	7.1	6	0	NR
Whitson [17]	59	2007	Stage I NSCLC	Lobectomy	11/70	6.4/NR	NR	NR	4 y, 72

LOS = length of stay; NR = not reported; NSCLC = non-small cell lung cancer.

Oncologic Benefit of VATS?

<u>Petersen et al</u>:

VATS lobectomy has greater likelihood of planned delivery of adjuvant therapy after surgery

61% VATS lobectomy received 75% or more planned adjuvant therapy without delay or dose reduction

versus

40% open lobectomy received 75% or more planned adjuvant therapy

VATS Lobectomy Reduces Cytokine Responses Compared With Conventional Surgery

Anthony P. C. Yim, MD, Song Wan, MD, PhD, Tak Wai Lee, FRCS, and Ahmed A. Arifi, FRCS

Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China

Fig 2. Plasma levels of IL-6 (A), IL-8 (B), and IL-10 (C) in patients undergoing video-assisted thoracic surgery (n = 18) or conventional (n = 18) lobectomy. Data are mean \pm SEM. (BS = before surgery; End = at the end of surgery; 4, 8, 24, and 48 hours = time points after surgery.)

Quality of Life: Demmy et al, *Ann Thor Surg* 2008

Fig 1. Discharge independence after thoracoscopic lobectomy. The bar graphs demonstrate a much lower need for home health services in the video-assisted thoracic surgery (VATS) group. The types of services needed for each procedure type are displayed as well. (OT = occupational therapy; other = other miscellaneous care needs; PT = physical therapy.) Adapted from Demmy TL, et al. Discharge independence with minimally invasive lobectomy. Am J Surg 2004;188:698–702.

□ None □ Mild Moderate Severe

p<0.001

Fig 2. Pain control at 3 weeks after video assisted thoracic surgery (VATS) lobectomy. The pie charts show that VATS patients have significantly (p < 0.01) less pain as measured by the most potent analgesic still required: severe—schedule 2 narcotic; moderate—schedule 3 or lower; mild–nonsteroidal anti-inflammatory drugs or acetaminophen. These data represent an updated series of high-risk reported previously [49, 61].

Benefit of VATS Lobectomy in the Elderly

Koizumi et al:

> 32 octogenarian or nonagenarian patients

5 year survival rate of 56% with VATS lobectomy with early stage cancer

Versus

5 year survival rate of 0% with open lobectomy with early stage cancer

Use of Video-Assisted Thoracic Surgery for Lobectomy in the Elderly Results in Fewer Complications

Stephen M. Cattaneo, MD, Bernard J. Park, MD, Andrew S. Wilton, MS, Venkatraman E. Seshan, PhD, Manjit S. Bains, MD, Robert J. Downey, MD, Raja M. Flores, MD, Nabil Rizk, MD, and Valerie W. Rusch, MD

Departments of Surgery and Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York

Table 2. Perioperative Data

Characteristics	$\begin{array}{l} \text{THOR} \\ (n = 82) \end{array}$	VATS (n = 82)	p Value ^a
Histology			
Adenocarcinoma	24 (29)	24 (29)	0.14
Adeno w/BAC	27 (33)	32 (39)	
Squamous	24 (29)	13 (16)	
Other	7 (10)	13 (16)	
Tumor diameter (range), cm	2.0 (0.3-8.0)	1.8 (0.1–7.5)	0.11
Pathologic stage			
IA	49 (60)	56 (68)	0.13
IB	15 (18)	19 (23)	
п	8 (10)	3 (4)	
III–IV	10 (12)	4 (5)	
Length of stay (range), days	6 (2–27)	5 (2–20)	< 0.001
Complications, n (%)	37 (45)	23 (28)	0.04
Death, n (%)	3 (3.6)	0 (0)	0.10

Average age = <u>76 years</u>

Type, n (%)	THOR (n = 82)	VATS (n = 82)	p Value ^a
None	45 (55)	59 (72)	0.04
Pulmonary	27 (33)	12 (15)	0.01
Cardiac (atrial fibrillation)	19 (23)	14 (17)	0.44
Genitourinary	5 (6)	2 (2)	
Gastrointestinal	4 (5)	0 (0)	
Infectious	4 (5)	1 (1)	
Neurologic	1 (1)	3 (4)	
Other	2 (2)	0 (0)	

VATS Cost

Costs of Videothoracoscopic Surgery versus Open Resection for Patients with of Lung Carcinoma

Nakajima et al, Cancer 2000

Feature	Open thoracotomy	Thoracoscopic surgery	P value
No. of patients	66	36	
Age in yrs (mean) Tumor pathology	35-77 (61.2)	42-83 (64.9)	N.S.
Primary lung carcinoma	65	14	
Metastatic lung carcinoma	1	22	< 0.000
Surgical procedure			
Lobectomy	64	8	-
Pargial resection or			
segmentectomy	2	28	< 0.000
Length of hospitalization (days)	23.8 ± 7.8	17.3 ± 7.8	< 0.000
Charges (U.S. dollars)			
Medication	904 ± 1568	874 ± 780	N.S.
Laboratory examination	1335 ± 632	990 ± 529	0.0064
Total surgical charges	6174 ± 1383	5097 ± 747	< 0.000
Anesthesia	1853 ± 416	1534 ± 309	0.0004
Surgical fee	2746 ± 423	2746 ± 37	N.S.
Disposable equipment	573 ± 274	0	< 0.000
Hospitalization	3064 ± 1233	2319 ± 775	0.0015
Total hospital charges	$12,178 \pm 3877$	9825 ± 2296	0.0012

Video Clips

VATS Summary

- Enhanced visualization
- Decreased trauma to the tissue
- Decreased postoperative pain
- Decreased postoperative respiratory and other complications
- Decreased Hospital Stay
- Shortened Recovery time, allowing return to work and daily activities sooner
- Ability to offer surgery to higher risk patients who would not be candidates otherwise