Mediastinal Staging

Samer Kanaan, M.D.

Overview

Importance of accurate nodal staging
Accuracy of radiographic staging
Mediastinoscopy
EUS
EBUS

TNM Definitions

T Stage Size of the Primary Tumor Adjacent structures invaded into by Tumor N Stage Nodal disease involvement > M Stage Metastatic disease involvement

A

IB

IIA

IIB

IV

TNM Classifcation

T1N0M0 T2N0M0 T1N1M0 T2N1M0 or **T3N0M0** IIIA T1-3N2M0 or T3N1M0 T4N_{any}M0 or T_{any}N3M0 IIIB T_{any}N_{any}M1

I Highest Mediastinal 2 Upper Paratracheal 3 Prevascular and Retrotracheal 4 Lower Paratracheal (including azygos nodes) N₂ = single digit, ipsilateral N₃ = single digit, contratateral or supraclavicular Aortic Nodes 5 Subaortic (AP window) 6 Para-aortic (Ascending aorta or phrenic) Inferior Mediastinal Nodes 7 Inferior Mediastinal Nodes 8 Paraesophageal (below carina) 9 Pulmonary Ligament N₁ Nodes

- II Interlobar
- I2 Lobar
- I3 Segmental
- I4 Subsegmental

Superior Mediastinal Nodes

- I 0 Hilar

Stage IA, cancer is in the lung only, less than 3cm in size. Stage IB, the cancer is: (a) greater than 3cm in size (b) involve the main bronchus (c) invade visceral pleura (d) associated with obstructive pneumonitis.

Stage IIA, cancer is less than 3cm in size and involves ipsilateral hilar lymph nodes. Stage IIB, cancer is either the same as in stage IB and has also spread to ipsilateral hilar lymph nodes or Cancer has not spread to lymph nodes but has spread to one or more of the following: (a) the chest wall, (b) the diaphragm, (c) mediastinal pleura, (d) pericardium, (e) the main bronchus less than 2cm from the carina, and/or (f) associated obstructive pneumonitis of the entire lung.

^{© 2007} Terese Winslow U.S. Govt. has certain rights

Stage IIIA The cancer has spread to ipsilateral mediastinal or subcarinal lymph nodes (N2).

Similar to Stage IIB, It may also spread to one or more of the following: (a) the chest wall, (b) the diaphragm, (c) mediastinal pleura, (d) pericardium, (e) the main bronchus less than 2cm from the carina, and/or (f) associated obstructive pneumonitis of the entire lung. Stage IIIB The cancer has spread to (a) contralateral mediastinal or hilar nodes or ipsilateral supraclavicular nodes.

The cancer may also spread to one or more of the following: (b) the heart, (c) the inferior vena cava and the aorta, (f) the trachea, and (g) the esophagus.

Cancer may also spread to the pleural fluid (T4).

Separate nodules in the same lobe is also (T4)*

© 2007 Terese Winslow U.S. Govt. has certain rights

Staging

NSCLC Incidence by Stage US Population, 2006

Disease and Stage	Annual Incidence	1-Year Survival	5-Year Survival	
NSCLC	140,000		17%	
1	24,000	90%	70%	
11	9,000	80%	40%	
IIIA	42,000	70%	20%	
IIIB (limited)	11,000	50%	4%	
IIIB-IV	57,000	35%	3%	

IA	T1N0M0	67
IB	T2N0M0	57
IIA	T1N1M0	55
IIB	T2N1M0 or T3N0M0	39
IIIA	T1-3N2M0 or T3N1M0	23
IIIB	T4N _{any} M0 or T _{any} N3M0	5
IV	T _{any} N _{any} M1	1

Why is accurate nodal staging essential?

N1 disease
N2 disease
N3 disease

Treatment of Lung Cancer According to Stage

<u>Stage</u>	Primary treatment	Adjuvant therapy	Five-year survival rate (%)
	Non-small ce	all carcinoma	
I.	Resection	Chemotherapy	60 to 70
Ш	Resection	Chemotherapy with or without radiotherapy	40 to 50
IIIA (resectable)	Resection with or without preoperative chemotherapy	Chemotherapy with or without radiotherapy	15 to 30
IIIA (unresectable) or IIIB volvement of contralateral or ıpraclavicular lymph nodes)	Chemotherapy with concurrent or subsequent radiotherapy	None	10 to 20
IIIB (pleural effusion) or IV	Chemotherapy or resection of primary brain metastasis and primary T1 tumor	None	10 to 15 (two-year survival)
Limited disease	Small cell Chemotherapy with concurrent radiotherapy	<mark>carcinoma</mark> None	15 to 25
Extensive disease	Chemotherapy	None	< 5

(in รเ

Adapted with permission from Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med 2004;350:388.

Treatment – Stage IIIA

- Stage IIIA N2 disease 5 year survival is 10-15% overall
- Stage IIIA bulky mediastinal involvement (visible on CXR) have 5 year survival of 2-5%

Radiation:

Treatment with 60 Gy can achieve long term survival benefit in 5-10% of patients

Chemotherapy and Radiation:

Meta analysis from 11 randomized studies showed cisplatin based chemotherapy with radiation resulted in 10% reduction in the risk of death compared to radiation therapy alone.

Combined SurgicalTherapy:

- Neoadjuvant chemotherapy plus surgery had median survival > 3X versus surgery alone
- ➢ Neoadjuvant chemotherapy and radiation allowed 65-75% patients to undergo surgical resection → these patients had 27% 3 year survival.

- Patients benefit from neoadjuvant therapy and surgery versus resection followed by adjuvant therapy.
- Patients are more likely to complete chemotherapy regimen pre operatively than post operatively.
- Awaiting definitive results of the NATCH (Neoadjuvant Taxol Carboplatin Hope) trial available 2009

Alam N, et al. Lung Cancer 2005;47:385-394 Depierre A, et al. J Clin Oncol 2002;20:247-253

What is the accuracy of radiographic staging?

Noninvasive Staging of Non-small Cell Lung Cancer: ACCP Evidenced-Based Clinical Practice Guidelines (2nd Edition)

Gerard A. Silvestri, Michael K. Gould, Mitchell L. Margolis, Lynn T. Tanoue, Douglas McCrory, Eric Toloza and Frank Detterbeck

Chest 2007;132;178-201

Information gained by CT

> Tumor size

- > Tumor number
- Central tumor or Peripheral
- > Lymph node enlargement (>1 cm)
- Extent
 - Discrete lymph nodes versus mediastinal infiltration
- Metastatic disease

Accuracy of CT in Staging

CT scan **>**Tumor Sensitivity = 63% Specificity = 84% >Mediastinum Sensitivity = 51-75% Specificity = 66-86% Positive predictive value = 60% >Negative predictive value = 80%

> Toloza E, et al. Chest 2003(suppl):137s–146s Gould MK, et al. Ann Intern Med 2003; 139:879–892 Dwamena et al. Radiology 1999; 213:530–536

Accuracy of CT in Staging the Mediastinum

CT scanning alone is not sufficient to determine nodal staging

However, certain characteristics can guide further staging

CT Staging of the Mediastinum

- Group A: mediastinal infiltration
- Group B: discrete mediastinal lymph node enlargement
- Group C: central tumor or suspected N1 disease
- Group D: peripheral tumor, no mediastinal involvement

Invasive biopsy

Invasive biopsy

➢ N2, N3 involvement 20-25% → Invasive biopsy

> ???

Prevalence of N2 disease in clinical stage I

> Location? \succ Central \rightarrow 9-11% > Peripheral \rightarrow 6-19% > Cell Type? ≻ Adenocarcinoma → 14% > Squamous \rightarrow 8.9% > Tumor Stage? > T1 \rightarrow 8.4% \succ T2 \rightarrow 10.4%

> Suzuki K et al, JTCVS; 1999;117:593-8 Daly BD, et al. JTCVS; 1993;105:904-10 Uy KFL et al, Difficult Decisions in Thoracic Surgery; 2007:68-74.

CT Staging of the Mediastinum

- Group A: mediastinal infiltration
- Group B: discrete mediastinal lymph node enlargement
- Group C: central tumor or suspected N1 disease
- Group D: peripheral tumor, no mediastinal involvement

Invasive biopsy

- Invasive biopsy
- N2, N3 involvement 20-25% → Invasive biopsy

??? -> But must assume at least 10% chance of N2 disease -> Invasive biopsy

PET in Staging

Detecting both size and activity of tumor
 Detecting size and activity of lymph nodes
 Provides whole-body information

 M1 disease found in 1-8% of patients thought to be stage I by CT
 M1 disease found in 7-18% of patients thought to be stage II by CT

Reed CE, et al. JTCVS 2003; 126:1943–1951 MacManus MP, et al. Int J Radiat Oncol Biol Phys 2001; 50:287–293

Accuracy of PET in Staging the Mediastinum

PET Scan **≻Tumor** Sensitivity = 83-96% Specificity = 73-78% **Mediastinum** Sensitivity = 64-91% Specificity = 77-93% Distant Metastasis Sensitivity = 95% Specificity = 83%

Recommendations of PET in Staging the Mediastinum

≻Stage IA → consider

Stage IB-IIIB → should undergo PET

Any abnormal result in the mediastinum should prompt lymph node sampling **PET/CT combined**

JOURNAL OF CLINICAL ONCOLOGY

Accuracy of Helical Computed Tomography and [¹⁸F] Fluorodeoxyglucose Positron Emission Tomography for Identifying Lymph Node Mediastinal Metastases in Potentially Resectable Non–Small-Cell Lung Cancer

Francisco Pozo-Rodríguez, José L. Martín de Nicolás, María A. Sánchez-Nistal, Antonio Maldonado, Santiago García de Barajas, Rosa Calero-García, Miguel A. Pozo, Pedro Martín-Escribano, Isabel Martín-García, Ricardo García-Lujan, Angel Lopez-Encuentra, and Angel Arenas de Pablo

	Sensitivity	Specificity
СТ	86%	67%
PET	94%	59%
PET/CT	97%	44%

Is the combination of PET/CT good enough to obviate mediastinoscopy?

Radiographic N2, N3 = need for tissue biopsy prior to neoadjuvant therapy
NO

Radiographic N1 = 20-25% occult N2 disease
NO

Radiographic N0
CONTROVERSIAL

What is the prevalence of undetected N2 disease after PET/CT

PET/CT staging was node negative

At mediastinoscopy found to have N2 disease 11.7% of the time (n=137)

Gonzalez-Stawinski et al. JTCVS 2003;126:1900-1905

What is the prevalence of undetected N2 disease after PET/CT

≻ After CT → 19.2% (n=2224)
≻ After CT + PET → 6.7% (n=906)

> After CT + mediastinoscopy → 8.3% (n=869)
 > After CT + PET + mediastinoscopy → 4.5% (n=178)

Uy KFL et al, Difficult Decisions in Thoracic Surgery; 2007:68-74.

What is the prevalence of undetected N2 disease after PET/CT

PET/CT staging was node negative but at thoracotomy found to have N2 disease 5.6%

PET/CT/mediastinoscopy staging was node negative but at thoracotomy found to have N2 disease 4.5%

Meyers JTCVS 2006;131:882-829

Choice of lymph node sampling

Table 1—Techniques of Invasive Mediastinal Staging

Mediastinoscopy EUS-NA TBNA EBUS-NA TTNA VATS staging Chamberlain procedure Extended cervical mediastinoscopy

Mediastinoscopy

Sensitivity = 70-95%

Negative Predictive value = 88-93% Complication rate = 0.6%

Specificity = 100%

Positive Predictive value = 100%

Mortality rate = 0.08%

Emergency Sternotomy = 0.12%

Staging with Mediastinoscopy

Define N1, N2, N3 disease

>1, 3, 2L, 2R, 4L, 4R, 7 + enlarged nodes

➢Not 5,6,8,9

Luke WP, Pearson FG, et al. JTCVS; 1986: 91(1) 53-56. Kiser AC, Detterbeck FC. Diagnosis and treatment of lung cancer: an evidencebased guide for the practicing clinician. Philadelphia, PA: WB Saunders, 2001; 133–147

I Highest Mediastinal 2 Upper Paratracheal 3 Prevascular and Retrotracheal 4 Lower Paratracheal (including azygos nodes) N₂ = single digit, ipsilateral N₃ = single digit, contratateral or supraclavicular Aortic Nodes 5 Subaortic (AP window) 6 Para-aortic (Ascending aorta or phrenic) Inferior Mediastinal Nodes 7 Inferior Mediastinal Nodes 8 Paraesophageal (below carina) 9 Pulmonary Ligament N₁ Nodes

- II Interlobar
- I2 Lobar
- I3 Segmental
- I4 Subsegmental

Superior Mediastinal Nodes

- I 0 Hilar

What's the real problem with mediastinoscopy?

Patterns of Surgical Care of Lung Cancer Patients

Alex G. Little, MD, Valerie W. Rusch, MD, James A. Bonner, MD, Laurie E. Gaspar, MD, Mark R. Green, MD, W. Richard Webb, MD, and Andrew K. Stewart, MA

(Ann Thorac Surg 2005;80:2051-6)

Patterns of Surgical Care of Lung Cancer Patients

Alex G. Little, MD, Valerie W. Rusch, MD, James A. Bonner, MD, Laurie E. Gaspar, MD, Mark R. Green, MD, W. Richard Webb, MD, and Andrew K. Stewart, MA

(Ann Thorac Surg 2005;80:2051-6)

ACS survey in 2001 of 729 hospitals including 40,090 patients

Mediastinoscopy performed in 27.1% of patients going to curative resection

Of these mediastinoscopies, only 46.6% had documented node biopsy

Patterns of Surgical Care of Lung Cancer Patients

Alex G. Little, MD, Valerie W. Rusch, MD, James A. Bonner, MD, Laurie E. Gaspar, MD, Mark R. Green, MD, W. Richard Webb, MD, and Andrew K. Stewart, MA

(Ann Thorac Surg 2005;80:2051-6)

Perhaps they are utilizing PET/CT?
 26.5% received PET

Perhaps they are sampling at the time of thoracotomy?
 Only 42.2% of surgical resections had mediastinal lymph nodes

59.5% Stage I, 17.5% Stage II, 17.0% Stage III, 6.0% Stage IV

Bronchoscopy Endoscopic Ultrasound Endobronchial Ultrasound

EUS

- Can be done with conscious sedation
- Can detect and biopsy adrenal, celiac, liver metastasis
- Can detect T4 invasion into the mediastinum
 - EUS for T staging
 - Sensitivity 88%
 - Specificity 98%
 - False Negative 1%
 - False Positive 30%
 - EUS for N staging
 - Sensitivity 84%
 - Specificity 100%
 - False Negative 19%
 - False Positive 8%

Varadarajulu S, et al. Gastrointest Endosc 2004; 59:345–348 Detterbeck et al. Chest;2007:132 (3 Supplement): 202S. Annema JT, et al. JAMA 2005; 294:931–936, only study to investigate positive lymph with surgical incision

EUS

Table 4—EUS-NA of the Mediastinum in Lung Cancer Patients*

	Patients,	Patient	Feasibility,	Sensitivity,	Specificity,	FP,	FN,	Prevalence,	
Study/Year	No.	Type	%	%	%	%	%	%	Notes
Annema et al ³⁴ /2005	193	cN0_3†	100	90	100	0	27	79	
Annema et al ²⁹ /2004	36	?		/ 93	100	0	20	78	All PET+
Caddy et al ⁸⁹ /2005	33	?	100	91	100	0	15	67	
Fritscher-Ravens et al ⁹⁰ /	33	cN0–3†	100	88	100	0	11	48	Excluding bulky
2003 Lamon at a127/2005	FF	-NO 28		02	Dro		oot	ad mat	iont
Larsen et al 72005	250	-NO 2	100	92	PIC-S	elt	Cu	eu pa	
Subtotal	350	cinu-3	100	91		_		-	
Wallace et $al^{22}/2001$	107	cN2,3‡	100	87	popu	lat	ior	ו	
Annema et al ²³ /2005	93	cN2,3	100	71	P°P°	1000		•	
Kramer et al ²¹ /2004	81	cN2,3‡	100	72					
Wiersema et al ²⁰ /2001	33	cN2,3	100	100				0	
Larsen et al ²⁸ /2002	29	cN2,3		90	ICT e	V16	len	ice of	N2 N3
Silvestri et al ¹⁹ /1996	26	cN2,3‡		88		V I C			112,110
Fritscher-Ravens et al ¹⁸ /	25	cN2,3		96	1	1 1	•		
2000					noda		1se	ase	
Gress et al ¹⁷ /1997	24	cN2,3	100	93 /					
Subtotal	418	cN2,3	100	87	98	2	22	68	
T1 1 1 1 126/2007	10.4	N 0 1	100	\sim	100			20	The second
Eloubeidi et al ²⁰ /2005	104	cN0,1	100	93	100	0	4	38	Prior negative
									mediastinoscopy
Wallace et $al^{24/2004}$	64	oN0.1	100	61	100	0	18	36	nndings
LeBlanc et $al^{31/2004}$	67	oN0.1	100	45	100	0	21	33	
Subtotal	235	oN0.1	100		100	0	14	36	
Subtotat	200	010,1	100		100	U	14	50	
Total	1,003			84	99.5	0.7	19	61	

Detterbeck et al. Chest;2007:132 (3 Supplement): 202S.

EUS in the Setting of a Negative CT

TABLE 1. ENDOSCOPIC ULTRASOUND-GUIDED FINE-NEEDLE ASPIRATION FINDINGS THAT PRECLUDED SURGERY

EUS-FNA Finding	n
Positive celiac lymph node	2
Esophageal wall invasion (T4)	1
Synchronous esophageal cancer	1
Positive contralateral mediastinal lymph node	5
Total	9

Saved an inappropriate thoracotomy in 9/67 = 13%

LeBlanc et al. Am J Resp and Crit Care Med. 171 (2): 177. (2005)

EUS in the Setting of a Negative CT

DECLUTE OF

Location of NSCLC	Patient	ATS Lymph Node Station(s)	Accessible to EUS Imaging*
Right upper lobe	1	2	Ν
	2	4	N
	3	4	Ν
Left upper lobe	4	5	Y
	5	6, 11	Ν
	6	6, 11	Ν
Right hilum	7	7, 11	Y
-	8	10	Y
Left hilum	9	7, 11	Y
Lingula	10	8	Y [†]
Right lower lobe	11	7	Y
	12	7, 10	Y
	13	7, 11, 12	Y‡
Left lower lobe	14	5, 6	Y‡
	15	5, 9, 10	Y
	16	7	Y [†]
	17	7, 10	Y [†]

Failed to detect N2 disease in 17/67 = 25%

Would never be able to detect N2 disease in 5/67 = 7%

LeBlanc et al. Am J Resp and Crit Care Med. 171 (2): 177. (2005)

Endobronchial Ultrasound-Guided Needle Aspiration (EBUS)

Stations 1, 2, 3, 4, 7, 10
Not 5, 6, 8, 9
Only EBUS-positive nodes sampled

- Sensitivity 90%
- Specificity 100%
- False Positive 0%
- False Negative 20%
- Few complications
- Up to 25% suspected malignancy can be benign
- Minimize mediastinal scarring for future biopsy or resection
- Can be done with conscious sedation, no need for intubation

Detterbeck et al. Chest;2007:132 (3 Supplement): 202S. Doelken P, Reed C, Silvestri G, et al. Ann Thorac Surg 2008;85:224 –30

EBUS

Table 6 — EBUS-NA of the Mediastinum in Lung Cancer Patients*

	Patients,	Patient		Feasibility,	Sensitivity,	Specificity,	FP,	FN,	Prevalence,
Study/Year	No.	Туре	Technique	%	%	%	%	%	%
Herth et al ⁴⁶ /2006	502	¢I-III	RT-US bronch (22 ga)		94	100	0	(89)†	98
Yasufuku et al ¹⁰¹ /2005	108	cII–III	RT-US bronch (22 ga)	100	95	100	0	11	69
Yasufuku et al ¹⁰² /2004	70	cII–III	RT-US bronch (22 ga)	100	95	100	0	10	67
			_						
Vilmann et al ¹⁰³ /2005‡	31	cII–III	RT-US bronch (22 ga)	100	85	100	0	28	65
Rintoul et al ¹¹² /2005	20	cII–III	RT-US bronch (22 ga)	100	79	100	0	30	70
Kanoh et al ¹⁰⁴ /2005	54	cII–III	Catheter probe (19 ga)	100	86	100	0	37	81
Plat et al ¹⁰⁵ /2006	33	cII–III	Catheter (histo needle)		93	100	0	25	82
Herth et al ⁴⁷ /2006	100	cI	RT-US bronch 22 ga		94	100	0	1	17
Summary	918	\smile			90	100	0	20	68

EBUS in Patients with Normal CT

Eur Respir J 2006; 28: 910-914

Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically normal mediastinum

F.J.F. Herth*, A. Ernst*^{,#}, R. Eberhardt*, P. Vilmann[¶], H. Dienemann⁺ and M. Krasnik[§]

- > 100 patients
- Biopsies taken from any identifiable lymph node 2, 4, 7, 10, 11
- 199 lymph nodes
- Average size 8mm
- Measured against pathologic specimen
- Sensitivity 92.3%
- Specificity 100%
- Negative predictive value 96.3%

EBUS in Patients with Normal CT

Eur Respir J 2006; 28: 910-914

Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically normal mediastinum

F.J.F. Herth*, A. Ernst*^{,#}, R. Eberhardt*, P. Vilmann¹, H. Dienemann⁺ and M. Krasnik[§]

Upstaged to N1 disease in 3% patients
Upstaged to N2 disease in 13% patients
Upstaged to N3 disease in 3% patients

Saved an inappropriate thoracotomy in 16%
 Failed to identify N2 or N3 disease in 2% of patients

EUS + EBUS

Complete "Medical Mediastinoscopy" Under Conscious Sedation: A Prospective Blinded Comparison of Endoscopic and Endobronchial Ultrasound to Bronchoscopic Fine Needle Aspiration for Malignant Mediastinal Lymph Nodes Michael B. Wallace, Jorge M. Pascual, Massimo Raimondo,

EBUS: stations 1-4, 7
EUS: stations 8, 9
Conscious sedation
52 minutes

Procedure	Sensitivity	Specificity
Bronch-FNA	45%	100%
EBUS-FNA	83%	100%
EUS-FNA	83%	100%
Bronch + EBUS	86%	100%
EUS + EBUS	97%	100%

Per patient accuracy

Procedure	Sensitivity	Specificity	p value
Bronchoscopy-FNA	36%	100%	
EBUS-FNA	70%	100%	<0.002 (vs bronch)
EUS- FNA	73%	100%	<0.001 (vs bronch), > 0.2 (vs ebus)
Bronch + EBUS	82%	100%	
EBUS + EUS	95%	100%	< 0.03 (vs bronch $+$ ebus),
Bronch + EUS	77%	100%	< 0.025 (vs eus + bronch) = 0.09 (vs eus + ebus), > 0.2 (vs bronch + ebus)

EUS + EBUS = Medical Mediastinoscopy

Vilmann P, Puri R.

The complete "medical" mediastinoscopy (EUS-FNA + EBUS-TBNA).Minerva Med. 2007 Aug;98(4):331-8.

Sensitivity 100%Specificity 100%

	Sensitivity	Specificity	False Neg	False Pos	Station	Limitations
Med	78-95	100	11	0	1, 3, 2, 4, 7	Utilization
EUS	87	100	19	8	5, 6, 8, 9	Limited location
EBUS	90	100	20	0	1, 3, 2, 4, 7, 10	No standard protocol
EUS+ EBUS	95	100			1, 2, 3, 4, 8, 9, 10	No data

	*	Sensitivity	Specificity	False Neg	False Pos	Station	Limitations
Med	42	78-95	100	11	0	1, 3, 2, 4, 7	Utilization
EUS	<mark>66</mark>	87	100	19	8	5, 6, 8, 9	Limited location
EBUS	94	90	100	20	0	1, 3, 2, 4, 7, 10	No standard protocol
EUS+ EBUS	97	95	100			1, 2, 3, 4, 8, 9, 10	No data

* Sensitivity in the setting of radiographic stage 1 disease

Summary

Mediastinum should be staged invasively utilizing mediastinoscopy, EUS, EBUS or EUS+EBUS.

PET/CT alone will miss N2 disease (5-12%)

Perhaps future lies with medical mediastinoscopy of EUS+EBUS